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Abstract

It is known that each combinatorial graph determines an abelian group called its sandpile

group. The primary objective of this research is to examine how the graph determines the

properties of the corresponding sandpile group.

This investigation first focused on a graph that is a cycle. Secondly, it studied a variation

of the cycle, delving into the mathematical properties and dynamics of sandpile groups

within these structures. Through analysis, consistent generators and identities were found

and proven for these sandpile groups.

Introduction

The chip-firing problem and the sandpile group are recently developed areas of study in

mathematics, offering insights into real-world phenomena such as the formation of sand

dunes. These problems are characterized by their ability to generate complex behavior from

simple local rules, making them captivating subjects for investigation.

In 1987, the chip-firing problem was introduced as an illustration of self-organized critical-

ity, a concept that characterizes natural processes gravitating toward a delicate equilibrium

that can easily become unstable [5].

The problem uses a graph to represent a configuration of sandpile locations, with each

pile assigned an integer value corresponding to the number of grains of sand it holds. The

dynamics of the system are driven by the heights of the sandpiles; a sandpile that is too high

is unstable and can topple, thereby distributing some of the grains of sand at its location to

neighboring locations. When a pile topples, it will distribute a minimal amount of sand to

its neighbors according to its out-degree, the number of adjacent piles in the examples we

will study.

In this research, we focus on examining the characteristics of the sandpile group for a

given arrangement of sandpiles.

1



By delving into the properties and relationships within these sandpile groups, we hope

to shed light on the fundamental characteristics of the sandpile group of a graph.

Pile 1 Pile 2 Pile 3 Pile 4

Figure 1: An example of a graph representation of a chip-firing system with four piles in a
line.

A pile is unstable if its value exceeds the number of its neighboring piles. When a pile is

unstable, it fires, distributing one of its values to each of its neighbors. This redistribution

of value may lead to the firing of neighboring piles, the process continues repeatedly. Either

this process continues forever or it reaches a stable distribution where no more firing can

occur. One way to guarantee that we reach a stable distribution is to assume that the un-

derlying structure has a sink and is connected, i.e., one can get from any pile to any other

by moving between a sequence of adjacent piles. The sink serves as a recipient for chips from

neighboring piles but does not contribute any value itself. In other words, when a pile fires,

any chips destined for the sink will “fall to the floor” and not be tracked further.

3 4 2 6

SINK

Pile 1 Pile 2 Pile 3 Pile 4

Figure 2: The chip-firing system from Figure 1 with added values to each pile a sink

1 5 2 6

SINK

Figure 3: The chip-firing system from Figure 2 after Pile 1 fires.
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1 1 1 0

SINK

Figure 4: The system from Figure 2 after firing until a stable configuration was reached.

In our research, we will represent the configuration in Figure 4 as (1110) or (1, 1, 1, 0).

We may also refer to this as the sandpile circular configuration of size n. The set of all

stable and reachable configurations of piles is known as recurrent, these recurrent configura-

tions form a set. For the previous example system, the recurrent elements are known to be

(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), and (1, 1, 1, 0).

1 0 0 0

SINK

Figure 5: This is an example of a stable yet unreachable configuration as it cannot be reached
from any other configuration.

This set possesses an identity element. When the identity element is added to any

other element, and the firing process continues until a stable configuration is reached, the

resulting element will be that other element. For instance, for the graph in Figure 2, the

identity element is (1, 1, 1, 1). Therefore, if we take the result from Figure 4 and add it to

the identity element, (1, 1, 1, 0)+(1, 1, 1, 1) = (2, 2, 2, 1), which then fires down to (1, 1, 1, 0).

In fact, any two recurrent sandpile configurations added together and fired until stable will

result in one of the recurrent configurations.

Because addition is associative, so is the addition of recurrent elements. For example,

(1, 1, 1, 0) + (1, 1, 1, 1)) + (1, 1, 0, 1) = (2, 2, 2, 1) + (1, 1, 0, 1) = (3, 3, 2, 2) = (1, 0, 1, 1) and

(1, 1, 1, 0) + ((1, 1, 1, 1) + (1, 1, 0, 1)) = (1, 1, 1, 0) + (2, 2, 1, 2) = (3, 3, 2, 2) = (1, 0, 1, 1), these

are equivalent.

Another property is that each element s of the set has an inverse s−1, that is s+ s−1 = I

where I is the identity of the set. For example, with s = (1, 1, 0, 1), s−1 = (1, 0, 1, 1) because
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(1, 1, 0, 1) + (1, 0, 1, 1) = (2, 1, 1, 2) = (1, 1, 1, 1) which is the identity.

Because of these characteristics, the set forms a mathematical object known as a group.

We call the set of recurrent configurations with the above operation the sandpile group of

the graph. Because the addition of any elements in this set is commutative (a + b = b + a

for any set elements a and b) the sandpile group is a special kind of group called an abelian

group.

Methods

The research methods employed in this study involved the analysis of sandpile groups using

the SageMath computer system [10] and the application of various proof techniques, mainly

direct proofs, and proofs by induction.

SageMath software was utilized for general computations and computations related to the

sandpile group, as well as other aspects of group theory and linear algebra [10]. This system

provides packages specifically designed for studying sandpile groups, making it a suitable

tool for our research. Through this tool, we were able to study certain configurations of

hypothetical patterns and ultimately prove our hypotheses.

To investigate the characteristics of sandpile groups and their relationship to graph prop-

erties, we conducted analyses using sandpile configurations of different sizes. Specifically,

we focused on graphs with a sink that acts as a pile in the system but does not actively

participate in the value distribution.

Throughout the research, a combination of computational analysis and rigorous math-

ematical proofs was employed to investigate the sandpile group and its relation to graph

properties. These methods allowed us to analyze different sandpile configurations, explore

their properties, and establish theorems and conjectures.

Theorem 1. The following is true for the sandpile group of n+ 1 vertices in a circle, with

one vertex as the sink.

(a) The sandpile group is cyclic
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(b) If n = 2k is even, than one generator a is the vector of ones except zero in position k;

and another generator b is given by the vector of ones except zero in position (k + 1).

(c) If n = 2k + 1 is odd, then one generator a is a vector of ones except a zero in position

k, another generator b is given by the vector of ones except a zero in position (k + 2).

Proof. Let a denote the sandpile group element of ones with a zero in position k. The one’s

vector, (1, 1, · · · , 1) is the maximal stable configuration. We will denote this I. Now, consider

the operation a + I = (1, · · · , 1, 0, 1, · · · , 1) + (1, · · · , 1) = (2, · · · , 2, 1, 2, · · · , 2). After

firing down, we get the sequence (2, · · · , 2, 1, 2, · · · , 2) → (1, 3, 2, · · · , 2, 2, 0, 3, 2, · · · , 2) →

(2, 1, 3, · · · , 2, 2, 1, 1, 3, · · · , 2) → (2, 1, 3, · · · , 2, 1, 2, · · · , 2).

Continuing this process, it eventually fires down to (1, · · · , 1, 0, 1, · · · , 1) = a. Thus, a is

recurrent [6].

The Laplacian matrix L with the sink row and column removed, is denoted as L̂ for the

chip-firing configuration.

By Kirchhoff’s Theorem, if L denotes the Laplacian matrix of a graph G then the number

of spanning trees in G is equal to (−1)i+j detL(i, j) where the ith row and jth column are

removed from L to obtain L(i, j) [4]. In our case i = j so the number of spanning trees in

G is equal to det L̂. Because the sink is removed from our graph, the remainder forms a

spanning tree and thus the determinant is nonzero. Hence L̂ is invertible.

Now, consider the inverse of L̂. The first column of L̂−1 is the solution to the equation:

L̂ · x =



1

0

...

0


= e1.

Let L̂i←ei denote the matrix L̂ with the i-th column replaced by the i-th column of the
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identity matrix. By Cramer’s rule, we find that the ith entry of x is given by:

xi =
det(L̂i←ei)

det(L̂)
=

n− i+ 1

n+ 1
.

Hence, the first row of L̂−1 can be expressed as 1
n+1

· [n · · · 2 1]. Consequently, the result

of multiplying the first row of L̂−1 by the vector a yields:

1

n+ 1
· [n · · · 2 1] · a =

(n+ 1)(k − 1) + k + 1

n+ 1
= (k − 1) +

k + 1

2k + 1
.

Note that k+1
2k+1

is a reduced fraction. d. To demonstrate this, note that 2k+1 = 2(k+1)−1

so 2(k+1)−1(2k+1) = 1.By Bezout’s Identity, we observe that the greatest common divisor

(gcd) of 2k + 1 and k + 1 is 1. This implies that they are coprime, as the only common

divisor is 1.

Thus the order of a is the least common multiple of the denominators of the elements of

x, and the order of x must be less than or equal to n + 1 we conclude that the order of va

is 2k + 1 = n + 1. Thus, a is a generator. A similar proof can be used to show that if n is

odd, i.e., n = 2k + 1 for some integer k, a defined as the vector of ones with a zero in the

kth position is also a generator.

Similarly, we can show that the vector of ones with a zero in position (k + 1) also has

an order of n + 1 and is therefore also a generator for both the even case. The vector of

ones with a zero in position (k + 2) will be a generator of the sandpile group in the odd n

case.

Theorem 2. Let S be the configuration consisting of a path of n piles and an additional pile

that is a sink and is connected to each vertex in the path. Then

(a) S is cyclic

(b) One generator, a, is the vector of ones except a zero in the first position. A second

generator, b, is the vector of ones except a zero in its nth position.
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Proof. Consider the vector a defined as a vector of ones with a zero in the first position.

We know that the identity I of S is the all-ones vector. Now consider a + I. This will

look like (0, 1, 1, . . . , 1) + (0, 1, 1, . . . , 1) = (1, 2, 2, . . . , 2). In this configuration, only the 2

in the nth position can topple, so (1, 2, 2, . . . , 2) → (1, 2, 2, . . . , 3, 0). Now only the 3 in the

(k − 1)th position can topple, so (1, 2, 2, . . . , 3, 0) → (1, 2, 2, . . . , 3, 0, 1). This pattern will

continue: (1, 2, 2, . . . , 3, 0, 1) → (1, 2, 2, . . . , 3, 0, 1, 1) → · · · → (0, 1, 1, . . . , 1) = a. Thus, a is

recurrent.

Let L̂ represent the Laplacian matrix obtained by removing the sink row and column

from the configuration’s Laplacian matrix L.

According to Krichoff’s Theorem, if L denotes the Laplacian matrix of a graph G, the

number of spanning trees in G can be determined by (−1)i+j det L̂, where L̂ is obtained by

removing the ith row and jth column from L [4]. In our case, since i = j, the number of

spanning trees in G is simply det L̂. As the sink is removed from our graph, the remaining

structure forms a spanning tree, ensuring that the determinant is non-zero. Therefore L̂ is

invertible.

L̂ =


2 −1 0 ... 0 0
−1 3 −1 ... 0 0
0 −1 3 ... 0 0
...

...
...
...

...
...

0 0 0 ... 3 −1
0 0 0 ... −1 2


Note that L̂ is an (n × n) matrix, where n ≥ 2. For n = 1, L is a 1 × 1 matrix with

determinant 1. For n = 2, L̂ is a 2× 2 matrix with determinant 3.

Using cofactor expansion on the first column to find detL̂, we get detL̂ = L̂(1|1)+L̂(2|1)+

· · · = 2 ∗ detAn−1 − detAn−2 where An is an nxn matrix that takes the form

An =


2 −1 0 ... 0 0
−1 3 −1 ... 0 0
0 −1 3 ... 0 0
...

...
...
...

...
...

0 0 0 ... 3 −1
0 0 0 ... −1 3


Because this is a tri-diagonal matrix, the n-th continuant Kn is defined recursively as Kn =
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3 ∗Kn−1 −Kn−2 with the initial conditions K1 = 1 and K2 = 3. It’s important to note that

using this relation Kn is equivalent to the 2n− 1st Fibonacci number. Now we have detA =

Fib(2∗n−1) So det L̂ = 2 ∗ Fib(2∗n−1)−1 − Fib(2∗n−1)−1 = 2 ∗ Fib2∗n−3 − Fib2∗n−5 = Fib2∗(n−1)

This is equivalent to a bisection of the Fibonacci numbers, d(n) = Fib2(n−1). It is known

that the Fibonacci numbers are a strongly divisible sequence, meaning that gcd(Fibn,Fibm) =

Fibgcd(n,m). Now consider d(n) and d(n + 1). We know that dn = Fib2(n−1) and dn+1 =

Fib2((n+1)−1) = Fib2n. Since n and n+ 1 are coprime, we have gcd(2n, 2(n+ 1)) = 2. There-

fore, gcd(Fib2n,Fib2(n+1)) = Fibgcd(2(n−1),2n = Fib2 = 1. Thus, Fib2n and Fib2(n−1), and

consequently d(n) and d(n+ 1), are coprime.

Consider the solution to the equation L̂ · x = a. By applying Cramer’s rule, the i-th

entry of x is given by

xi =
det(L̂i→a)

det(L̂)
=

Fib2(n−i−1)+1

Fib2(n−1)
,

Since gcd(2(n−i−1)+1, 2(n−1)) = 1, according to the strong divisibility principle of the

Fibonacci numbers, we have gcd(Fib2(n−i−1)+1,Fib2(n−1)) = Fib1 = 1. Thus, the numerator

and denominator of any xi are coprime. Therefore, each xi is reduced.

Consequently, because the order of a is the least common multiple of the denominators

of the elements of x, and the order of x must be less than or equal to Fib2n, we conclude

that the order of a is Fib2(n−1), implying that a is a generator. A similar proof can be used

to show that a vector of ones with a zero in the last position is also a generator.

Conclusion

This research delved into the intriguing world of the Chip-Firing Problem and its associated

mathematical object, the Sandpile Group. We explored multiple sandpile configuration

families, analyzing their dynamics and uncovering enthralling properties.

Through our investigation, we made discoveries regarding the structure of the sandpile

group for specific pile arrangements. Notably, for the families we studied, we ascertained

that the sandpile groups are cyclic and have two generators, represented by vectors with
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zeros in specific positions.

The Chip-Firing Problem and Sandpile Group continue to be alluring areas for future

research.
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